Identification

Author

Siegrist D, Pavlin J

Title

Bio-ALIRT biosurveillance detection algorithm evaluation

Year

2004

Publication type

Article

Journal

MMWR

Created

2012-06-04 18:39:36+00:00

Modified

2016-07-25 15:24:41.571698+00:00

Details

Volume

53

Number

Suppl.

Pages

152-158

Access

Language

English

URL http://www.cdc.gov/mmwr/preview/mmwrhtml/su5301a29.htm
Accessed

2016-06-13

Extended information

Abstract

Introduction: Early detection of disease outbreaks by a medical biosurveillance system relies on two major components: 1) the contribution of early and reliable data sources and 2) the sensitivity, specificity, and timeliness of biosurveillance detection algorithms. This paper describes an effort to assess leading detection algorithms by arranging a common challenge problem and providing a common data set.

Objectives: The objectives of this study were to determine whether automated detection algorithms can reliably and quickly identify the onset of natural disease outbreaks that are surrogates for possible terrorist pathogen releases, and do so at acceptable false-alert rates (e.g., once every 2--6 weeks).

Methods: Historic de-identified data were obtained from five metropolitan areas over 23 months; these data included International Classification of Diseases, Ninth Revision (ICD-9) codes related to respiratory and gastrointestinal illness syndromes. An outbreak detection group identified and labeled two natural disease outbreaks in these data and provided them to analysts for training of detection algorithms. All outbreaks in the remaining test data were identified but not revealed to the detection groups until after their analyses. The algorithms established a probability of outbreak for each day's counts. The probability of outbreak was assessed as an "actual" alert for different false-alert rates.

Results: The best algorithms were able to detect all of the outbreaks at false-alert rates of one every 2--6 weeks. They were often able to detect for the same day human investigators had identified as the true start of the outbreak.

Conclusions: Because minimal data exists for an actual biologic attack, determining how quickly an algorithm might detect such an attack is difficult. However, application of these algorithms in combination with other data-analysis methods to historic outbreak data indicates that biosurveillance techniques for analyzing syndrome counts can rapidly detect seasonal respiratory and gastrointestinal illness outbreaks. Further research is needed to assess the value of electronic data sources for predictive detection. In addition, simulations need to be developed and implemented to better characterize the size and type of biologic attack that can be detected by current methods by challenging them under different projected operational conditions.